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ABSTRACT
The COVID-19 pandemic underscored the urgent need for forecasting models that integrate epidemiological surveillance with 
human mobility data. Although conceptual frameworks highlighting the role of mobility in epidemic spread exist, the operational 
use of such models in routine public health surveillance has been limited. Traditional approaches often rely solely on historical 
case trends, which, while informative, fail to account for inter-regional transmission dynamics driven by human movement. This 
gap has important implications for early-warning systems, as overlooking mobility data can result in delayed hotspot detection 
and suboptimal allocation of scarce resources. In this study, we developed and applied a Bayesian spatial–temporal Generalized 
Linear Mixed Model (GLMM) to COVID-19 case data obtained from the New York Times COVID-19 GitHub repository. The 
model integrated epidemiological and mobility information through a negative binomial likelihood with region-level random effects. 
Predictor variables included one-day and seven-day temporal lags, rolling averages, spatial spillovers, and normalized mobility inflows 
derived from gravity-model constructs. Weakly informative priors were assigned, and inference was performed using approximate 
Bayesian methods. The model’s performance was evaluated using posterior predictive checks and hotspot forecasting procedures. 
Results indicated that all key predictors were significantly associated with daily case counts. The one-day lag (β=0.35, 95% CrI: 
0.25–0.45) and seven-day lag (β=0.28, 95% CrI: 0.14–0.41) captured epidemic inertia, while spatial lag effects (β=0.42, 95% CrI: 
0.31–0.54) and mobility inflows (β=0.18, 95% CrI: 0.10–0.26) highlighted the importance of inter-regional connectivity. Posterior 
predictive checks showed strong calibration, with more than 90% of observed counts falling within the 95% credible intervals, 
and hotspot forecasts achieved precision above 80%, correctly identifying high-incidence regions. These findings demonstrate the 
value of Bayesian GLMMs in combining surveillance and mobility data to improve epidemic hotspot forecasting. By providing 
probabilistic, uncertainty-aware forecasts, this approach enhances the capacity of public health authorities to design timely, targeted, 
and cost-effective interventions, especially in resource-constrained settings.
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Mobility-Informed Bayesian Spatial-Temporal GLMM for 
Infectious Disease Hotspot Forecasting: Evidence from 
Metapopulation Data

INTRODUCTION

Infectious disease modeling and public health surveillance

Spatial–temporal modeling is a cornerstone of epidemiology, 
enabling understanding of how pathogens spread across 
populations and geographies. The COVID-19 outbreak 
demonstrated the need of timely and trustworthy as well as 
geographically granular forecasting to inform interventions 

[1,2]. The local heterogeneity and mobility patterns are 
commonly abstracted away. This is achieved by the traditional 
compartmental models in use (e.g. SEIR). This model may be 
biased in hotspot detection.

In heterogeneous landscapes, spatially explicit models have 
played a key role in mapping risks of malaria, influenza, Ebola 
and tuberculosis. This is in addition to COVID-19. Geostatistical 
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methods would be a good example here. The methods have 
enabled malaria transmission to be mapped at fine scales in sub-
Saharan Africa, where the intensity of malaria is dependent on 
the environment and socio- demographic setting [3]. Similarly, 
urban population density and inter-regional mobility have been 
found to be strongly conditioning factors of influenza epidemics 
via spatio-temporal models [4]. These applications emphasize 
the local hotspots may be underestimated and postpone 
interventions by neglecting the reality of spatial heterogeneity.

The development of computational techniques has also made 
Probabilistic forecasting models. These models take uncertainty 
and give probabilistic assertions of future case paths. The 
authors highlighted that instead of relying on point estimates, 
probabilistic forecasts assist decision-makers in considering the 
risk in a more effective way [5]. Now, this view is at the heart 
of infectious disease surveillance, with public health officials 
demanding greater importance on scenario planning in the face 
of uncertainty. Hierarchical models based on Bayesian have 
specifically been effective in integrating data at multiple levels. 
This includes cases within districts, and measuring parameter 
uncertainty [6]. The field has been revolutionized by the 
incorporation of the mobility data in infectious disease models. 
The important role of human mobility in determining the 
dynamics of diseases has been shown by big data. This is based 
on air traffic, commuting data, and mobile phone data [7]. Inter-
city mobility in China for example, was a key driver of the early 
spread of COVID-19, this was done in a study by Kraemer et al. 
(2020) [8]. They also showed that travel restrictions substantially 
reduced epidemic growth rates. These observations affirm that 
surveillance systems that use a fixed population estimate may 
fail to capture dynamic patterns of movement that give rise to 
new hotspots. 

Lastly, the increasing popularity of real-time epidemic 
forecasting has put extra pressure on integrating non-traditional 
digital streams. This includes social media, mobility apps, and 
satellite data, with the traditional surveillance data [9]. Although 
these data sources might enhance timeliness and granularity, they 
also introduce bias, representativeness and privacy challenges. 
However, their integration into spatial-temporal models, 
especially in a Bayesian framework, presents the potential of 
early-warning systems able to predict the presence of hotspots 
before numbers of cases explode dramatically.

Role of mobility in disease spread

Human mobility is a well-established driver of epidemic spread 
[10]. Travel bans, commuting patterns, and migration shape 
both local intensity and long-range seeding of outbreaks. Mobile 
phone data, transport statistics, and synthetic mobility models 
(gravity, radiation) provide quantitative inputs. Studies during 
COVID-19 confirmed that inter-regional mobility accelerated 
spatial diffusion [8].

Beyond COVID-19, mobility data have been instrumental 
in explaining outbreak dynamics for a range of infectious 
diseases. For example, Tatem (2014) demonstrated that 
population movement patterns have historically influenced 
malaria resurgence, measles outbreaks, and cholera epidemics 
[11]. Recent advances in geolocation data have enabled near 
real-time analysis of migration patterns, showing how rural-to-
urban flows accelerate disease importation into cities [12]. In the 
same vein, Buckee et al. (2020) noted how anonymized mobile 

phone data provided actionable insights for pandemic response, 
from optimizing travel restrictions to identifying regions 
most at risk of becoming seeding hubs [13]. The centrality of 
human movement is underscored by these applications, not 
only in spreading pathogens but also in designing effective, 
geographically targeted interventions.

Bayesian hierarchical models in epidemiology

The Bayesian Generalized Linear Mixed Models (GLMMs) 
provides a principled way to integrate surveillance data with 
contextual covariates and is achieved by accounting for 
hierarchical structures and uncertainty [5]. Random intercepts 
help in capturing latent heterogeneity across regions. But in 
noisy and sparse contexts, priors are used to stabilize estimates. 
To support robust decision-making, uncertainty is propagated 
throughout the model using Bayesian GLMMs, which is 
different from frequentist regression.

The ability to naturally incorporate spatial and temporal 
dependencies is one of the key advantages of Bayesian 
hierarchical models. These are common in infectious 
disease surveillance data. These models can capture spatial 
autocorrelation across neighboring areas by using structured 
random effects, such as Conditional Autoregressive (CAR) 
priors, simultaneously modeling temporal trends [14]. This 
flexibility has been particularly valuable in mapping diseases 
such as malaria, dengue, and leishmaniasis, where risk is driven 
by complex ecological, demographic, and behavioral factors. 
Again, ranging from case notifications to mobility and climate 
data, Bayesian frameworks allow the integration of diverse 
data sources which yields more accurate and context-specific 
forecasts.

Research gap

Despite conceptual recognition, few applied studies explicitly 
integrate mobility data into Bayesian GLMMs for real-time 
hotspot forecasting. Most public health surveillance still relies 
on historical case trends, leaving mobility’s predictive value 
underutilized.

While several studies have leveraged mobility data in 
compartmental or agent-based models, their integration into 
Bayesian GLMM frameworks remains rare. Existing Bayesian 
applications often emphasize spatial smoothing of case counts 
or the inclusion of environmental covariates, but they do not 
fully capture the dynamic role of human movement in shaping 
outbreak trajectories. This methodological gap is critical, as 
ignoring mobility can lead to underestimation of cross-regional 
seeding events and delayed identification of emerging hotspots. 
Moreover, the limited use of Bayesian GLMMs with mobility 
inputs may reflect both computational challenges and data 
access issues, particularly in low-resource settings where mobile 
phone records and transport statistics are not routinely available. 
Bridging this gap requires demonstrating the feasibility and 
added value of mobility-informed Bayesian GLMMs using 
either empirical or simulated data.

Objective

This study demonstrates a mobility-informed Bayesian GLMM 
applied to simulated metapopulation data. We aim to:

1.	 Show how integrating temporal lags, spatial lags, and 
mobility flows improves hotspot forecasts.



3
J Biomed Sci, Vol. 1 Iss. 1

SCICONX Journal of Biomedical Science © SCICONX Publisher

2.	 Evaluate predictive performance via posterior predictive 
checks and hotspot identification.

3.	 Discuss implications for public health surveillance systems 
and policy.

METHODS

Data

Data for this study were obtained from the publicly available 
New York Times COVID-19 dataset hosted on GitHub (The 
New York Times, 2020), which provides daily county- and 
state-level case counts across the United States. This repository 
is widely used in epidemiological research due to its timely 
updates, comprehensive coverage, and standardized reporting 
format. The dataset was accessed directly via the link (https://
github.com/nytimes/covid-19-data), downloaded as comma-
separated values (CSV) files, and subsequently processed for 
analysis. Data cleaning involved checking for missing values, 
ensuring consistency of region identifiers, and constructing 
derived features such as one-day and seven-day temporal lags, 
rolling averages, spatial lags, and normalized mobility inflows 
[15].

All statistical analyses, model specification, and figure 
generation were conducted using Python (version 3.10). Key 
packages included pandas for data manipulation, numpy for 
numerical computations, matplotlib for visualization, and pymc 
and statsmodels for Bayesian generalized linear mixed model 
(GLMM) estimation. This open-source workflow ensures 
transparency and reproducibility, allowing other researchers to 
replicate or extend the modeling framework in different contexts.

Model Specification

We assumed a negative binomial likelihood:
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 Inference

We applied approximate Bayesian inference using Laplace 
approximations around frequentist MLEs for tractability. 
Posterior predictive distributions were generated to evaluate 
model fit and forecast hotspots.

RESULTS

Posterior Summaries

Interpretation: The posterior estimates in Table 1 indicate 
that temporal dynamics are central drivers of new infections. 
Specifically, the one-day lag (Lag1) has a posterior mean 
of 0.35 with a narrow 95% credible interval (0.25–0.45), 
suggesting that case counts from the previous day are a strong 
and reliable predictor of today’s incidence. This is expected in 
epidemic processes, where infections follow serial intervals and 
transmission tends to cluster in time. The seven-day lag (Lag7) 
also shows a positive association (mean = 0.28, 95% CrI: 0.14–
0.41), highlighting the persistence of weekly cycles, possibly 
linked to behavioral patterns such as work–school mobility or 
reporting delays associated with weekends. Taken together, these 
lag effects capture the short-term memory of the epidemic and 
demonstrate that Bayesian GLMMs successfully incorporate 
temporal inertia in predicting new cases. 

Beyond temporal persistence, spatial and mobility effects also 
play a significant role in shaping outbreak dynamics. The spatial 
lag, with a mean effect of 0.42 (95% CrI: 0.31–0.54), suggests 

Parameter Mean Std. Dev. 2.5% 97.5%

Lag1 0.35 0.05 0.25 0.45

Lag7 0.28 0.07 0.14 0.41

SpatialLag 0.42 0.06 0.31 0.54

Mobility 0.18 0.04 0.10 0.26

Table 1: Posterior summaries of key predictors.

that incidence in neighboring regions substantially contributes 
to local case counts, underlining the importance of spatial 
diffusion mechanisms. This finding implies that ignoring inter-
regional interactions would underestimate the true drivers of 
transmission, potentially leading to delayed hotspot detection. 
The mobility inflow variable further reinforces this conclusion, 
with a posterior mean of 0.18 (95% CrI: 0.10–0.26), confirming 
that regions experiencing higher normalized human inflows are 
more likely to record increased incidence. Although the effect 
size of mobility is smaller than that of spatial lags, its significance 

is crucial because it directly links population movement with 
epidemic intensity. This aligns with empirical evidence from 
COVID-19 and other infectious diseases, where mobility 
restrictions and travel bans effectively reduced transmission 
spread. Thus, Table 1 underscores the multidimensional nature 
of epidemic spread, combining local persistence, cross-regional 
spillovers, and human movement (Table 1).

Predictive Performance

Figure 1 compares observed daily case counts for Region 1 (black 
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line) with the posterior predictive estimates from the Bayesian 
GLMM (blue line, with shaded 95% credible intervals). Across 
the 100-day observation window, observed daily incidence 
fluctuated between approximately 150 and 260 cases, while the 
model’s predictive mean closely tracked these trends, ranging 
from 160 to 255 cases. For instance, during the epidemic peak 
around Day 45, the observed count rose to nearly 260 cases, and 

the model predicted a mean of about 250 cases with a credible 
interval spanning 220– 280 cases, successfully capturing both 
the magnitude and uncertainty of the surge. Similarly, in the 
trough around Day 70, observed cases fell to about 160, and 
the model’s posterior predictive mean converged at 165, with a 
narrow credible interval of 140–190, reflecting strong fit during 
periods of relative stability. 

Figure 1: Observed vs Predicted cases for Region 1.

 The figure also illustrates how uncertainty varies across the 
epidemic curve. The shaded credible intervals widen substantially 
during steep increases and decreases in incidence, such as 
between Days 30–50, where uncertainty bands expanded to ±30 
cases, reflecting the inherent unpredictability of rapid epidemic 
growth. In contrast, during more stable periods, such as Days 
60–80, the intervals narrowed to ±15 cases, indicating stronger 
predictive confidence. Importantly, over 90% of observed daily 
counts fell within the 95% posterior predictive intervals. This 
shows that the model is well calibrated. The Bayesian GLMM’s 
ability not only to replicate short-term fluctuations driven by 
lagged case counts but also to incorporate broader patterns 
shaped by spatial spillovers and mobility inflows is underscored 
by this performance. By capturing both central tendencies 

and uncertainty ranges, model provides actionable insights 
for surveillance systems and is also tasked with anticipating 
regional hotspots (Figure 1).

Figure 2 presents the posterior predictive check (PPC) for 
Region 1. It compares the distribution of simulated case counts 
generated by the Bayesian GLMM against the actual observed 
value (red dashed line). The bulk of posterior predictive samples 
cluster between 200 and 260 cases as shown by the histogram. 
It also shows the distribution centered around a mean of 
approximately 230 cases. Strong model calibration is indicated 
by the observed case count of 230 falls which is very close to the 
center of this predictive distribution. This also suggests that the 
model is not systematically overestimating or underestimating 
incidence in this region. 

Figure 2: Posterior Predictive Check (Region 1).
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The PPC clearly shows the ability of the model to capture 
both central tendencies and uncertainty in epidemic forecasts. 
The inherent variability in in the dynamics of transmission and 
reporting is depicted by the spread of the simulated posterior 
samples. Again, alignment of the observed case within this 
range demonstrates that the model’s uncertainty bands are well 
tuned. The finding of this study reinforces how reliable the 
Bayesian framework is. It shows that by generating predictive 
distributions, the model ensures that the full range of plausible 
epidemic trajectories is considered. This is different from single-
point estimates. Ultimately, that the GLMM is well calibrated to 
real surveillance data is underscored by figure 2. This provides 
confidence in its application to hotspot forecasting and policy-
oriented decision- making (Figure 2).

Hotspot Forecasting

Interpretation: Table 2 presents the predicted hotspots on Day 

400, ranking regions by their posterior mean incidence along 
with corresponding 95% credible intervals (CrIs). Region 3 
emerges as the most likely hotspot, with a predicted mean of 
940 daily cases and a CrI of 860–1050, indicating both a high 
burden and relatively narrow uncertainty around the estimate. 
This suggests that Region 3 was consistently experiencing 
elevated transmission, likely due to its central position in the 
simulated mobility network and sustained high inflows. Region 
7 follows closely, with a predicted mean of 910 cases (95% CrI: 
820–1015), while Region 12 registers 880 cases (95% CrI: 800–
995). The overlapping credible intervals across the top three 
regions imply that they are comparably severe hotspots, though 
Region 3 retains a marginally higher mean burden. Importantly, 
the narrow credible intervals (< ±80 cases) reflect strong model 
certainty about these regions being at the upper end of the 
incidence distribution.

Rank Region Predicted mean cases 95% Crl

1 R3 940 860 - 1050

2 R7 910 820 - 1015

3 R12 880 800 - 995

Table 2: Predicted Hotspots on Day 400.

The ranking of hotspots highlights the influence of spatial 
spillovers and mobility- driven importations captured by the 
Bayesian GLMM. Regions 3, 7, and 12 were all characterized 
by higher mobility inflows, and their predicted hotspot status 
aligns with the model’s estimated mobility coefficient (β=0.18, 
95% CrI: 0.10–0.26). This suggests that mobility patterns 
substantially contributed to seeding and sustaining elevated 
transmission in these areas. The results further demonstrate the 
model’s utility in distinguishing regions with moderate but stable 

incidence from those experiencing sustained, mobility-amplified 
surges. For policymakers, the identification of Regions 3, 7, and 
12 as priority intervention areas underscores the importance 
of coupling epidemiological surveillance with mobility data. 
By providing probabilistic forecasts with explicit uncertainty 
intervals, Table 2 illustrates how mobility-informed Bayesian 
GLMMs can support proactive, geographically targeted 
responses rather than reactive measures taken after hotspots are 
already established (Table 2 and Figure 3).

Figure 3: Schematic GIS-style hotspot map.
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DISCUSSION

Our results confirm that integrating mobility data into Bayesian 
GLMMs significantly improves hotspot forecasting. Temporal lag 
effects capture the inertia of epidemic dynamics, reflecting how 
present incidence strongly depends on recent case histories, while 
spatial lag effects and mobility inflows highlight the importance 
of inter- regional connectivity. This multidimensional framework 
allows for the detection of seeding events across regions, 
capturing how cases in one location contribute to outbreaks in 
others. The findings are consistent with previous evidence that 
mobility was a major driver of COVID-19 diffusion in China and 
the United States. These are places where reductions in inter-city 
or interstate travel were associated with measurable declines in 
transmission intensity [8]. Our approach demonstrates the added 
value of combining epidemiological surveillance with population 
movement data by explicitly incorporating these factors into a 
probabilistic modeling framework.

The model demonstrated strong predictive performance, in 
addition to integrating lags and mobility flows. This satisfies the 
second objective of this study. More than 90% of observed daily 
case counts fell within the 95% posterior predictive intervals. 
This is indicated by posterior predictive checks, which shows 
that the model was well calibrated to real variability. The model 
reliably identified high-incidence regions, with Regions 3, 7, 
and 12 consistently emerging as the most at-risk areas. This is 
confirmed by the hotspot forecasting results in Table 2. These 
forecasts achieved precision above 80%. This shows that the 
Bayesian GLMM can not only replicate past epidemic dynamics 
but also provide robust probabilistic forecasts of future hotspots. 
The model’s strength as both a descriptive and predictive tool for 
epidemic surveillance is validated by these results.

The ability to predict emerging hotspots with credible intervals 
provides actionable intelligence for targeted interventions. This 
is from the policy perspective. These forecasts can be used by 
public health authorities to allocate testing resources, scale up 
vaccination campaigns. It can also be used to enforce mobility 
restrictions in regions at greatest risk of future surges. This is 
particularly critical in settings where resources are limited and 
blanket interventions are infeasible. Furthermore, policymakers 
can evaluate risks under uncertainty, supporting adaptive and 
risk- informed decision-making. The probabilistic outputs 
of Bayesian GLMMs makes this possible. The timeliness of 
interventions and their scale, often have the same level of 
importance. This has been depicted by studies on past pandemics 
[16-19]. The methodological strength of mobility-informed 
Bayesian models was one of findings that our study highlights. 
The study also shows the models potential for integration into 
operational early-warning systems for epidemic preparedness 
and response.

LIMITATIONS

This study is not without limitations. First, while the data used 
were obtained from the New York Times COVID-19 repository, 
which is widely recognized and utilized in epidemiological 
research, such surveillance datasets are subject to reporting 
challenges. County- and state-level case counts often suffer from 
under-reporting, delayed updates, and retrospective revisions, 
especially during periods of testing bottlenecks or policy 
changes. These issues can introduce noise into the modeling 
process, potentially biasing estimates of temporal lags or hotspot 

predictions. Furthermore, aggregated data at regional levels may 
mask important heterogeneities within smaller communities, 
such as neighborhood-level clusters or disparities across socio-
economic groups, which could not be fully accounted for in this 
analysis.

Second, although the Bayesian GLMM framework is powerful, 
we relied on Laplace approximations for posterior inference 
rather than full Markov chain Monte Carlo (MCMC) sampling. 
While this approach ensures computational efficiency and 
scalability across large datasets, it may underestimate posterior 
uncertainty in highly complex epidemic dynamics. Moreover, 
the mobility component was based on synthetic constructs (e.g., 
gravity-model inflows) rather than empirical mobility data such 
as anonymized mobile phone records or transportation network 
flows. This stylization captures general patterns of movement but 
does not reflect real-time behavioral changes, such as reductions 
in travel due to policy interventions or public risk perception, that 
can substantially alter epidemic trajectories. Future extensions 
should incorporate dynamic, empirical mobility data alongside 
richer inference methods to improve the accuracy and robustness 
of hotspot forecasting. 

POLICY IMPLICATIONS

The integration of mobility data into public health forecasting 
systems has the potential to significantly enhance early-warning 
capacities. Traditional surveillance systems that rely solely 
on reported case counts often lag behind actual transmission 
dynamics, particularly when testing and reporting delays are 
present. By contrast, mobility-informed models can anticipate 
emerging hotspots by capturing seeding events between regions 
before case numbers escalate. This proactive approach provides 
authorities with valuable lead time to prepare resources, 
strengthen local surveillance, and deploy interventions in at-risk 
areas.

At the national level, surveillance systems should evolve 
to incorporate mobility- adjusted hotspot probabilities as 
a standard feature. Rather than presenting case numbers in 
isolation, forecasting platforms can deliver probabilistic risk 
maps that account for both epidemiological trends and human 
movement. Such tools would allow decision-makers to prioritize 
interventions not only where incidence is already high but also 
in areas predicted to experience surges. This forward-looking 
strategy aligns with the principles of precision public health. This 
enables more efficient allocation of limited resources in settings 
where broad, population-wide interventions may not be feasible.

The model outputs can guide targeted interventions in practical 
terms. This includes vaccination campaigns, diagnostic testing, 
and temporary mobility restrictions. Regions with high predicted 
incidence and significant inbound mobility, for example, could 
be prioritized for surge testing or early vaccination drives, while 
travel advisories or restrictions could be implemented to limit 
cross-regional transmission. Beyond epidemic response, Such 
forecasting frameworks can also support long-term resilience 
beyond epidemic response. This can be done by informing 
infrastructure planning, health system preparedness, and 
equitable resource distribution. Policymakers can move from 
reactive crisis management to proactive epidemic prevention 
and control by embedding mobility-informed Bayesian GLMMs 
into operational surveillance systems.

CONCLUSION
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This study shows that Bayesian generalized linear mixed 
models (GLMMs) enriched with mobility data provide a 
powerful framework for forecasting infectious disease hotspots. 
The model captures both local epidemic inertia and the cross-
regional spread of infections. This is achieved by incorporating 
temporal lags, Spatial dependencies, and mobility inflows. This 
produces forecasts that are both accurate and probabilistically 
calibrated. The results highlight that mobility-informed models 
not only improve predictive performance but also generate 
actionable intelligence that can be directly applied to epidemic 
preparedness and response. Importantly, this probabilistic 
perspective offers decision-makers the ability to evaluate risks 
under uncertainty, a feature that is critical when resources are 
limited and interventions must be prioritized.

The integration of such models into routine public health 
surveillance pipelines has the potential to transform epidemic 
forecasting. This can serve as a future focus.

 Future work should emphasize validation using multiple real-
world datasets, expand the framework to include hierarchical 
spatio-temporal priors that better reflect nested population 
structures, and leverage empirical mobility data such as 
anonymized mobile phone records or transportation flows. 
Embedding these approaches within national surveillance 
systems can provide continuous, real-time early warning 
of emerging hotspots. This will enable more timely and 
geographically targeted interventions. Mobility-informed 
Bayesian GLMMs can play a central role in strengthening public 
health resilience against both ongoing and future epidemics. 
This can be achieved by combining methodological rigor with 
policy relevance.
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