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ABSTRACT

The COVID-19 pandemic underscored the urgent need for forecasting models that integrate epidemiological surveillance with
human mobility data. Although conceptual frameworks highlighting the role of mobility in epidemic spread exist, the operational
use of such models in routine public health surveillance has been limited. Traditional approaches often rely solely on historical
case trends, which, while informative, fail to account for inter-regional transmission dynamics driven by human movement. This
gap has important implications for early-warning systems, as overlooking mobility data can result in delayed hotspot detection
and suboptimal allocation of scarce resources. In this study, we developed and applied a Bayesian spatial-temporal Generalized
Linear Mixed Model (GLMM) to COVID-19 case data obtained from the New York Times COVID-19 GitHub repository. The
model integrated epidemiological and mobility information through a negative binomial likelihood with region-level random effects.
Predictor variables included one-day and seven-day temporal lags, rolling averages, spatial spillovers, and normalized mobility inflows
derived from gravity-model constructs. Weakly informative priors were assigned, and inference was performed using approximate
Bayesian methods. The model’s performance was evaluated using posterior predictive checks and hotspot forecasting procedures.
Results indicated that all key predictors were significantly associated with daily case counts. The one-day lag ($=0.35, 95% Crl:
0.25-0.45) and seven-day lag (f=0.28, 95% Crl: 0.14-0.41) captured epidemic inertia, while spatial lag effects (p=0.42, 95% CrI:
0.31-0.54) and mobility inflows ($=0.18, 95% CrI: 0.10-0.26) highlighted the importance of inter-regional connectivity. Posterior
predictive checks showed strong calibration, with more than 90% of observed counts falling within the 95% credible intervals,
and hotspot forecasts achieved precision above 80%, correctly identifying high-incidence regions. These findings demonstrate the
value of Bayesian GLMMs in combining surveillance and mobility data to improve epidemic hotspot forecasting. By providing
probabilistic, uncertainty-aware forecasts, this approach enhances the capacity of public health authorities to design timely, targeted,
and cost-effective interventions, especially in resource-constrained settings.
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COVID-19

INTRODUCTION [1,2]. The local heterogeneity and mobility patterns are
commonly abstracted away. This is achieved by the traditional
compartmental models in use (e.g. SEIR). This model may be
Spatial-temporal modeling is a cornerstone of epidemiology, biased in hotspot detection.

enabling understanding of how pathogens spread across
populations and geographies. The COVID-19 outbreak
demonstrated the need of timely and trustworthy as well as
geographically granular forecasting to inform interventions
] Biomed Sci, Vol. 1 Iss. 1

Infectious disease modeling and public health surveillance

In heterogeneous landscapes, spatially explicit models have
played a key role in mapping risks of malaria, influenza, Ebola
and tuberculosis. This is in addition to COVID-19. Geostatistical
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methods would be a good example here. The methods have
enabled malaria transmission to be mapped at fine scales in sub-
Saharan Africa, where the intensity of malaria is dependent on
the environment and socio- demographic setting [3]. Similarly,
urban population density and inter-regional mobility have been
found to be strongly conditioning factors of influenza epidemics
via spatio-temporal models [4]. These applications emphasize
the local hotspots may be underestimated and postpone
interventions by neglecting the reality of spatial heterogeneity.

The development of computational techniques has also made
Probabilistic forecasting models. These models take uncertainty
and give probabilistic assertions of future case paths. The
authors highlighted that instead of relying on point estimates,
probabilistic forecasts assist decision-makers in considering the
risk in a more effective way [5]. Now, this view is at the heart
of infectious disease surveillance, with public health officials
demanding greater importance on scenario planning in the face
of uncertainty. Hierarchical models based on Bayesian have
specifically been effective in integrating data at multiple levels.
This includes cases within districts, and measuring parameter
uncertainty [6]. The field has been revolutionized by the
incorporation of the mobility data in infectious disease models.
The important role of human mobility in determining the
dynamics of diseases has been shown by big data. This is based
on air traffic, commuting data, and mobile phone data [7]. Inter-
city mobility in China for example, was a key driver of the early
spread of COVID-19, this was done in a study by Kraemer et al.
(2020) [8]. They also showed that travel restrictions substantially
reduced epidemic growth rates. These observations affirm that
surveillance systems that use a fixed population estimate may
fail to capture dynamic patterns of movement that give rise to
new hotspots.

Lastly, the increasing popularity of real-time epidemic
forecasting has put extra pressure on integrating non-traditional
digital streams. This includes social media, mobility apps, and
satellite data, with the traditional surveillance data [9]. Although
these data sources might enhance timeliness and granularity, they
also introduce bias, representativeness and privacy challenges.
However, their integration into spatial-temporal models,
especially in a Bayesian framework, presents the potential of
early-warning systems able to predict the presence of hotspots
before numbers of cases explode dramatically.

Role of mobility in disease spread

Human mobility is a well-established driver of epidemic spread
[10]. Travel bans, commuting patterns, and migration shape
both local intensity and long-range seeding of outbreaks. Mobile
phone data, transport statistics, and synthetic mobility models
(gravity, radiation) provide quantitative inputs. Studies during
COVID-19 confirmed that inter-regional mobility accelerated
spatial diffusion [8].

Beyond COVID-19, mobility data have been instrumental
in explaining outbreak dynamics for a range of infectious
diseases. For example, Tatem (2014) demonstrated that
population movement patterns have historically influenced
malaria resurgence, measles outbreaks, and cholera epidemics
[11]. Recent advances in geolocation data have enabled near
real-time analysis of migration patterns, showing how rural-to-
urban flows accelerate disease importation into cities [12]. In the
same vein, Buckee et al. (2020) noted how anonymized mobile
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phone data provided actionable insights for pandemic response,
from optimizing travel restrictions to identifying regions
most at risk of becoming seeding hubs [13]. The centrality of
human movement is underscored by these applications, not
only in spreading pathogens but also in designing effective,
geographically targeted interventions.

Bayesian hierarchical models in epidemiology

The Bayesian Generalized Linear Mixed Models (GLMMs)
provides a principled way to integrate surveillance data with
contextual covariates and is achieved by accounting for
hierarchical structures and uncertainty [5]. Random intercepts
help in capturing latent heterogeneity across regions. But in
noisy and sparse contexts, priors are used to stabilize estimates.
To support robust decision-making, uncertainty is propagated
throughout the model using Bayesian GLMMSs, which is
different from frequentist regression.

The ability to naturally incorporate spatial and temporal
dependencies is one of the key advantages of Bayesian
hierarchical models. These are common in infectious
disease surveillance data. These models can capture spatial
autocorrelation across neighboring areas by using structured
random effects, such as Conditional Autoregressive (CAR)
priors, simultaneously modeling temporal trends [14]. This
flexibility has been particularly valuable in mapping diseases
such as malaria, dengue, and leishmaniasis, where risk is driven
by complex ecological, demographic, and behavioral factors.
Again, ranging from case notifications to mobility and climate
data, Bayesian frameworks allow the integration of diverse
data sources which yields more accurate and context-specific
forecasts.

Research gap

Despite conceptual recognition, few applied studies explicitly
integrate mobility data into Bayesian GLMMs for real-time
hotspot forecasting. Most public health surveillance still relies
on historical case trends, leaving mobility’s predictive value
underutilized.

While several studies have leveraged mobility data in
compartmental or agent-based models, their integration into
Bayesian GLMM frameworks remains rare. Existing Bayesian
applications often emphasize spatial smoothing of case counts
or the inclusion of environmental covariates, but they do not
fully capture the dynamic role of human movement in shaping
outbreak trajectories. This methodological gap is critical, as
ignoring mobility can lead to underestimation of cross-regional
seeding events and delayed identification of emerging hotspots.
Moreover, the limited use of Bayesian GLMMs with mobility
inputs may reflect both computational challenges and data
access issues, particularly in low-resource settings where mobile
phone records and transport statistics are not routinely available.
Bridging this gap requires demonstrating the feasibility and
added value of mobility-informed Bayesian GLMMs using
either empirical or simulated data.

Objective

This study demonstrates a mobility-informed Bayesian GLMM
applied to simulated metapopulation data. We aim to:

1. Show how integrating temporal lags, spatial lags, and
mobility flows improves hotspot forecasts.
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2. Evaluate predictive performance via posterior predictive
checks and hotspot identification.

3. Discuss implications for public health surveillance systems
and policy.

METHODS
Data

Data for this study were obtained from the publicly available
New York Times COVID-19 dataset hosted on GitHub (The
New York Times, 2020), which provides daily county- and
state-level case counts across the United States. This repository
is widely used in epidemiological research due to its timely
updates, comprehensive coverage, and standardized reporting
format. The dataset was accessed directly via the link (https://
github.com/nytimes/covid-19-data), downloaded as comma-
separated values (CSV) files, and subsequently processed for
analysis. Data cleaning involved checking for missing values,
ensuring consistency of region identifiers, and constructing
derived features such as one-day and seven-day temporal lags,
rolling averages, spatial lags, and normalized mobility inflows
[15].

All statistical analyses, model specification, and figure
generation were conducted using Python (version 3.10). Key
packages included pandas for data manipulation, numpy for
numerical computations, matplotlib for visualization, and pymc
and statsmodels for Bayesian generalized linear mixed model
(GLMM) estimation. This open-source workflow ensures
transparency and reproducibility, allowing other researchers to
replicate or extend the modeling framework in different contexts.

Model Specification

We assumed a negative binomial likelihood:

Y, ~ NegBin (,u,.t , (p)

With linear predictor:

Log(s,)=a+u +BLagl, +B,LagT, + f;Mean7d, + §,SpatialLag,
+ f;Mobility, + Log(Pop,)

Table 1: Posterior summaries of key predictors.

Where:
u~N (0, O'z) are random intercepts

@ is the dispersion parameter

Priors
B, ~ N(0,1) (weakly informative)
a ~N(0,2)
o, ~ Half Normal (1)
@ ~ Gamma (2,0.1)
Inference

We applied approximate Bayesian inference using Laplace
approximations around frequentist MLEs for tractability.
Posterior predictive distributions were generated to evaluate
model fit and forecast hotspots.

RESULTS
Posterior Summaries

Interpretation: The posterior estimates in Table 1 indicate
that temporal dynamics are central drivers of new infections.
Specifically, the one-day lag (Lagl) has a posterior mean
of 0.35 with a narrow 95% credible interval (0.25-0.45),
suggesting that case counts from the previous day are a strong
and reliable predictor of today’s incidence. This is expected in
epidemic processes, where infections follow serial intervals and
transmission tends to cluster in time. The seven-day lag (Lag7)
also shows a positive association (mean = 0.28, 95% Crl: 0.14—
0.41), highlighting the persistence of weekly cycles, possibly
linked to behavioral patterns such as work—school mobility or
reporting delays associated with weekends. Taken together, these
lag effects capture the short-term memory of the epidemic and
demonstrate that Bayesian GLMMs successfully incorporate
temporal inertia in predicting new cases.

Beyond temporal persistence, spatial and mobility effects also
play a significant role in shaping outbreak dynamics. The spatial
lag, with a mean effect of 0.42 (95% Crl: 0.31-0.54), suggests

Parameter Mean Std. Dev. 2.5% 97.5%
Lagl 0.35 0.05 0.25 0.45
Lag7 0.28 0.07 0.14 0.41

SpatialLag 0.42 0.06 0.31 0.54

Mobility 0.18 0.04 0.10 0.26

that incidence in neighboring regions substantially contributes
to local case counts, underlining the importance of spatial
diffusion mechanisms. This finding implies that ignoring inter-
regional interactions would underestimate the true drivers of
transmission, potentially leading to delayed hotspot detection.
The mobility inflow variable further reinforces this conclusion,
with a posterior mean of 0.18 (95% CrI: 0.10-0.26), confirming
that regions experiencing higher normalized human inflows are
more likely to record increased incidence. Although the effect
size of mobility is smaller than that of spatial lags, its significance
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is crucial because it directly links population movement with
epidemic intensity. This aligns with empirical evidence from
COVID-19 and other infectious diseases, where mobility
restrictions and travel bans effectively reduced transmission
spread. Thus, Table 1 underscores the multidimensional nature
of epidemic spread, combining local persistence, cross-regional
spillovers, and human movement (Table 1).

Predictive Performance

Figure 1 compares observed daily case counts for Region 1 (black
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line) with the posterior predictive estimates from the Bayesian
GLMM (blue line, with shaded 95% credible intervals). Across
the 100-day observation window, observed daily incidence
fluctuated between approximately 150 and 260 cases, while the
model’s predictive mean closely tracked these trends, ranging
from 160 to 255 cases. For instance, during the epidemic peak
around Day 45, the observed count rose to nearly 260 cases, and

the model predicted a mean of about 250 cases with a credible
interval spanning 220— 280 cases, successfully capturing both
the magnitude and uncertainty of the surge. Similarly, in the
trough around Day 70, observed cases fell to about 160, and
the model’s posterior predictive mean converged at 165, with a
narrow credible interval of 140—190, reflecting strong fit during
periods of relative stability.

— Observed
3001 —— Predicted (mean)
95% Crl
2751
250¢
LA
8200- ( ‘ \ \' ’l
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Figure 1: Observed vs Predicted cases for Region 1.

The figure also illustrates how uncertainty varies across the
epidemic curve. The shaded credible intervals widen substantially
during steep increases and decreases in incidence, such as
between Days 30—50, where uncertainty bands expanded to £30
cases, reflecting the inherent unpredictability of rapid epidemic
growth. In contrast, during more stable periods, such as Days
60-80, the intervals narrowed to £15 cases, indicating stronger
predictive confidence. Importantly, over 90% of observed daily
counts fell within the 95% posterior predictive intervals. This
shows that the model is well calibrated. The Bayesian GLMM’s
ability not only to replicate short-term fluctuations driven by
lagged case counts but also to incorporate broader patterns
shaped by spatial spillovers and mobility inflows is underscored
by this performance. By capturing both central tendencies
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and uncertainty ranges, model provides actionable insights
for surveillance systems and is also tasked with anticipating
regional hotspots (Figure 1).

Figure 2 presents the posterior predictive check (PPC) for
Region 1. It compares the distribution of simulated case counts
generated by the Bayesian GLMM against the actual observed
value (red dashed line). The bulk of posterior predictive samples
cluster between 200 and 260 cases as shown by the histogram.
It also shows the distribution centered around a mean of
approximately 230 cases. Strong model calibration is indicated
by the observed case count of 230 falls which is very close to the
center of this predictive distribution. This also suggests that the
model is not systematically overestimating or underestimating
incidence in this region.

== Observed = 230

:

...

100 150

200 250

Simulated case counts (posterior predictive)

Figure 2: Posterior Predictive Check (Region 1).

] Biomed Sci, Vol. 1 Iss. 1

SCICONX Journal of Biomedical Science © SCICONX Publisher



The PPC clearly shows the ability of the model to capture
both central tendencies and uncertainty in epidemic forecasts.
The inherent variability in in the dynamics of transmission and
reporting is depicted by the spread of the simulated posterior
samples. Again, alignment of the observed case within this
range demonstrates that the model’s uncertainty bands are well
tuned. The finding of this study reinforces how reliable the
Bayesian framework is. It shows that by generating predictive
distributions, the model ensures that the full range of plausible
epidemic trajectories is considered. This is different from single-
point estimates. Ultimately, that the GLMM is well calibrated to
real surveillance data is underscored by figure 2. This provides
confidence in its application to hotspot forecasting and policy-
oriented decision- making (Figure 2).

Hotspot Forecasting
Interpretation: Table 2 presents the predicted hotspots on Day

Table 2: Predicted Hotspots on Day 400.

400, ranking regions by their posterior mean incidence along
with corresponding 95% credible intervals (Crls). Region 3
emerges as the most likely hotspot, with a predicted mean of
940 daily cases and a Crl of 860-1050, indicating both a high
burden and relatively narrow uncertainty around the estimate.
This suggests that Region 3 was consistently experiencing
elevated transmission, likely due to its central position in the
simulated mobility network and sustained high inflows. Region
7 follows closely, with a predicted mean of 910 cases (95% Crl:
820-1015), while Region 12 registers 880 cases (95% Crl: 800—
995). The overlapping credible intervals across the top three
regions imply that they are comparably severe hotspots, though
Region 3 retains a marginally higher mean burden. Importantly,
the narrow credible intervals (< £80 cases) reflect strong model
certainty about these regions being at the upper end of the
incidence distribution.

Rank Region Predicted mean cases 95% Crl
1 R3 940 860 - 1050
2 R7 910 820 - 1015
3 R12 880 800 - 995

The ranking of hotspots highlights the influence of spatial
spillovers and mobility- driven importations captured by the
Bayesian GLMM. Regions 3, 7, and 12 were all characterized
by higher mobility inflows, and their predicted hotspot status
aligns with the model’s estimated mobility coefficient (§=0.18,
95% Crl: 0.10-0.26). This suggests that mobility patterns
substantially contributed to seeding and sustaining elevated
transmission in these areas. The results further demonstrate the
model’s utility in distinguishing regions with moderate but stable

incidence from those experiencing sustained, mobility-amplified
surges. For policymakers, the identification of Regions 3, 7, and
12 as priority intervention areas underscores the importance
of coupling epidemiological surveillance with mobility data.
By providing probabilistic forecasts with explicit uncertainty
intervals, Table 2 illustrates how mobility-informed Bayesian
GLMMs can support proactive, geographically targeted
responses rather than reactive measures taken after hotspots are
already established (Table 2 and Figure 3).
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Figure 3: Schematic GIS-style hotspot map.
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DISCUSSION

Our results confirm that integrating mobility data into Bayesian
GLMMs significantly improves hotspot forecasting. Temporal lag
effects capture the inertia of epidemic dynamics, reflecting how
present incidence strongly depends on recent case histories, while
spatial lag effects and mobility inflows highlight the importance
of inter- regional connectivity. This multidimensional framework
allows for the detection of seeding events across regions,
capturing how cases in one location contribute to outbreaks in
others. The findings are consistent with previous evidence that
mobility was a major driver of COVID-19 diffusion in China and
the United States. These are places where reductions in inter-city
or interstate travel were associated with measurable declines in
transmission intensity [8]. Our approach demonstrates the added
value of combining epidemiological surveillance with population
movement data by explicitly incorporating these factors into a
probabilistic modeling framework.

The model demonstrated strong predictive performance, in
addition to integrating lags and mobility flows. This satisfies the
second objective of this study. More than 90% of observed daily
case counts fell within the 95% posterior predictive intervals.
This is indicated by posterior predictive checks, which shows
that the model was well calibrated to real variability. The model
reliably identified high-incidence regions, with Regions 3, 7,
and 12 consistently emerging as the most at-risk areas. This is
confirmed by the hotspot forecasting results in Table 2. These
forecasts achieved precision above 80%. This shows that the
Bayesian GLMM can not only replicate past epidemic dynamics
but also provide robust probabilistic forecasts of future hotspots.
The model’s strength as both a descriptive and predictive tool for
epidemic surveillance is validated by these results.

The ability to predict emerging hotspots with credible intervals
provides actionable intelligence for targeted interventions. This
is from the policy perspective. These forecasts can be used by
public health authorities to allocate testing resources, scale up
vaccination campaigns. It can also be used to enforce mobility
restrictions in regions at greatest risk of future surges. This is
particularly critical in settings where resources are limited and
blanket interventions are infeasible. Furthermore, policymakers
can evaluate risks under uncertainty, supporting adaptive and
risk- informed decision-making. The probabilistic outputs
of Bayesian GLMMSs makes this possible. The timeliness of
interventions and their scale, often have the same level of
importance. This has been depicted by studies on past pandemics
[16-19]. The methodological strength of mobility-informed
Bayesian models was one of findings that our study highlights.
The study also shows the models potential for integration into
operational early-warning systems for epidemic preparedness
and response.

LIMITATIONS

This study is not without limitations. First, while the data used
were obtained from the New York Times COVID-19 repository,
which is widely recognized and utilized in epidemiological
research, such surveillance datasets are subject to reporting
challenges. County- and state-level case counts often suffer from
under-reporting, delayed updates, and retrospective revisions,
especially during periods of testing bottlenecks or policy
changes. These issues can introduce noise into the modeling
process, potentially biasing estimates of temporal lags or hotspot
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predictions. Furthermore, aggregated data at regional levels may
mask important heterogeneities within smaller communities,
such as neighborhood-level clusters or disparities across socio-
economic groups, which could not be fully accounted for in this
analysis.

Second, although the Bayesian GLMM framework is powerful,
we relied on Laplace approximations for posterior inference
rather than full Markov chain Monte Carlo (MCMC) sampling.
While this approach ensures computational efficiency and
scalability across large datasets, it may underestimate posterior
uncertainty in highly complex epidemic dynamics. Moreover,
the mobility component was based on synthetic constructs (e.g.,
gravity-model inflows) rather than empirical mobility data such
as anonymized mobile phone records or transportation network
flows. This stylization captures general patterns of movement but
does not reflect real-time behavioral changes, such as reductions
in travel due to policy interventions or public risk perception, that
can substantially alter epidemic trajectories. Future extensions
should incorporate dynamic, empirical mobility data alongside
richer inference methods to improve the accuracy and robustness
of hotspot forecasting.

POLICY IMPLICATIONS

The integration of mobility data into public health forecasting
systems has the potential to significantly enhance early-warning
capacities. Traditional surveillance systems that rely solely
on reported case counts often lag behind actual transmission
dynamics, particularly when testing and reporting delays are
present. By contrast, mobility-informed models can anticipate
emerging hotspots by capturing seeding events between regions
before case numbers escalate. This proactive approach provides
authorities with valuable lead time to prepare resources,
strengthen local surveillance, and deploy interventions in at-risk
areas.

At the national level, surveillance systems should evolve
to incorporate mobility- adjusted hotspot probabilities as
a standard feature. Rather than presenting case numbers in
isolation, forecasting platforms can deliver probabilistic risk
maps that account for both epidemiological trends and human
movement. Such tools would allow decision-makers to prioritize
interventions not only where incidence is already high but also
in areas predicted to experience surges. This forward-looking
strategy aligns with the principles of precision public health. This
enables more efficient allocation of limited resources in settings
where broad, population-wide interventions may not be feasible.

The model outputs can guide targeted interventions in practical
terms. This includes vaccination campaigns, diagnostic testing,
and temporary mobility restrictions. Regions with high predicted
incidence and significant inbound mobility, for example, could
be prioritized for surge testing or early vaccination drives, while
travel advisories or restrictions could be implemented to limit
cross-regional transmission. Beyond epidemic response, Such
forecasting frameworks can also support long-term resilience
beyond epidemic response. This can be done by informing
infrastructure planning, health system preparedness, and
equitable resource distribution. Policymakers can move from
reactive crisis management to proactive epidemic prevention
and control by embedding mobility-informed Bayesian GLMMs
into operational surveillance systems.

CONCLUSION
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This study shows that Bayesian generalized linear mixed
models (GLMMs) enriched with mobility data provide a
powerful framework for forecasting infectious disease hotspots.
The model captures both local epidemic inertia and the cross-
regional spread of infections. This is achieved by incorporating
temporal lags, Spatial dependencies, and mobility inflows. This
produces forecasts that are both accurate and probabilistically
calibrated. The results highlight that mobility-informed models
not only improve predictive performance but also generate
actionable intelligence that can be directly applied to epidemic
preparedness and response. Importantly, this probabilistic
perspective offers decision-makers the ability to evaluate risks
under uncertainty, a feature that is critical when resources are
limited and interventions must be prioritized.

The integration of such models into routine public health
surveillance pipelines has the potential to transform epidemic
forecasting. This can serve as a future focus.

Future work should emphasize validation using multiple real-

world datasets, expand the framework to include hierarchical
spatio-temporal priors that better reflect nested population
structures, and leverage empirical mobility data such as
anonymized mobile phone records or transportation flows.
Embedding these approaches within national surveillance
systems can provide continuous, real-time early warning
of emerging hotspots. This will enable more timely and
geographically targeted interventions. Mobility-informed
Bayesian GLMMs can play a central role in strengthening public
health resilience against both ongoing and future epidemics.
This can be achieved by combining methodological rigor with
policy relevance.
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